Search results for "Quantum yield"

showing 10 items of 163 documents

Photokinetic examination of (Z,E,E)-4,4′-distyrylazobenzene

1995

Abstract 4,4′-Distyrylazobenzenes demonstrate a photokinetic equilibrium and a superimposed thermal backward reaction in which the absorption coefficient of one of the partners in the equilibrium is principally unknown. Using the dependence of the photostationary state on the irradiation intensity, the photochemical quantum yields ϕ 1 A and ϕ 2 B were determined, as well as the thermal rate constant k , as a function of the irradiation and observation wavelengths. Experimental difficulties and the wavelength dependence of ϕ 1 A and ϕ 2 B are discussed.

business.industryChemistryGeneral Chemical EngineeringGeneral Physics and AstronomyQuantum yieldGeneral ChemistryMolecular electronic transitionWavelengthOpticsReaction rate constantPhotostationary stateAttenuation coefficientAbsorptanceIrradiationAtomic physicsbusinessJournal of Photochemistry and Photobiology A: Chemistry
researchProduct

Dibenzo[hi,st]ovalene as Highly Luminescent Nanographene: Efficient Synthesis via Photochemical Cyclodehydroiodination, Optoelectronic Properties, an…

2019

Dibenzo[hi,st]ovalene (DBOV), as a new nanographene, has demonstrated promising optical properties, such as red emission with a high fluorescence quantum yield of 79% and stimulated emission, as well as high thermal stability and photostability, which indicated its promise as a light-emitting and optical gain material. However, the previous synthetic routes required at least 12 steps. This obstructed access to different derivatives, e.g., to obtain crystals suitable for X-ray diffraction analysis and to tune the optoelectronic properties. Here, we report an efficient synthetic pathway to DBOV based on a sequential iodination-benzannulation of bi(naphthylphenyl)diyne, followed by photochemic…

Photon antibunchingbusiness.industryChemistryQuantum yieldGeneral ChemistryOvalene010402 general chemistryPhotochemistry01 natural sciencesBiochemistryCatalysisFluorescence spectroscopy0104 chemical scienceschemistry.chemical_compoundColloid and Surface ChemistryIntersystem crossingOptoelectronicsStimulated emissionEmission spectrumbusinessSpectroscopyJournal of the American Chemical Society
researchProduct

Influence of operational variables on the photodegradation kinetics of Monuron in aqueous titanium dioxide dispersions

1994

The degradation of Monuron [N′—(4-chlorophenyl)—N, N dimethyl urea] in aqueous TiO 2 dispersions irradiated in the near-UV region has been investigated using a Pyrex batch photoreactor. The influence on the degradation kinetics of pH, initial Monuron concentration and catalyst concentration has been studied. The mineralization of the pollutant was also investigated. Measurements of photon absorbed flows allowed to determine the quantum yield values; they were found to increase by increasing the initial pH of the dispersion.

chemistry.chemical_compoundAqueous solutionChemistryInorganic chemistryKineticsTitanium dioxideQuantum yieldMineralization (soil science)PhotodegradationDispersion (chemistry)Catalysis
researchProduct

Investigation of photoluminescence and amplified spontaneous emission properties of cyanoacetic acid derivative (KTB) in PVK amorphous thin films

2018

This work was supported by European Regional Development Fund within the Project No. 1.1.1.1/16/A/046 and A.Riekstins SIA “Mikrotīkls” donation, administered by University of Latvia Foundation.

guest-host systemAmplified spontaneous emissionQuenching (fluorescence)Materials sciencePhotoluminescenceDye lasercyanoacetic acid derivativeQuantum yieldglass forming low molecular weight compounds02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistryThreshold energy7. Clean energy01 natural sciences0104 chemical sciencesAmorphous solidamplified spontaneous emission:NATURAL SCIENCES:Physics [Research Subject Categories]0210 nano-technologyLuminescencelaser dyesOrganic Electronics and Photonics: Fundamentals and Devices
researchProduct

Tuning the photophysical properties of anti-B18H22: efficient intersystem crossing between excited singlet and triplet states in new 4,4'-(HS)2-anti-…

2013

The tuning of the photophysical properties of the highly fluorescent boron hydride cluster anti-B18H22 (1), by straightforward chemical substitution to produce 4,4'-(HS)2-anti-B18H20 (2), facilitates intersystem crossing from excited singlet states to a triplet manifold. This subsequently enhances O2((1)Δg) singlet oxygen production from a quantum yield of ΦΔ ∼ 0.008 in 1 to 0.59 in 2. This paper describes the synthesis and full structural characterization of the new compound 4,4'-(HS)2-anti-B18H20 (2) and uses UV-vis spectroscopy coupled with density functional theory (DFT) and ab initio computational studies to delineate and explain its photophysical properties.

Inorganic Chemistrychemistry.chemical_compoundIntersystem crossingchemistryHydrideSinglet oxygenAb initioQuantum yieldDensity functional theoryPhysical and Theoretical ChemistrySpectroscopyPhotochemistryFluorescenceInorganic chemistry
researchProduct

Surface modification of all-inorganic lead halide perovskite nanocrystals

2021

Abstract Newly emerged all-inorganic lead halide perovskite nanocrystals have shown unprecedented optical properties for a variety of display applications. Their superior optical properties over traditional semiconductor nanocrystals have opened a new paradigm in luminescent materials research. Because of their defect tolerance, the photoluminescent quantum yield of lead halide perovskite nanocrystals can reach near-unity. However, the ionic character of these nanocrystals causes extreme lability, which deteriorates its structural and optical properties. Moreover, the binding ability of surface ligands are quite weak and thus easily desorb during conventional purification techniques. Despit…

Materials sciencePhotoluminescenceNanocrystalSurface modificationHalideIonic bondingQuantum yieldNanotechnologyLuminescencePerovskite (structure)
researchProduct

In situobservation of the formation, diffusion, and reactions of hydrogenous species inF2-laser-irradiatedSiO2glass using a pump-and-probe technique

2006

We quantitatively studied the formation, diffusion, and reactions of mobile interstitial hydrogen atoms $({\mathrm{H}}^{0})$ and molecules $({\mathrm{H}}_{2})$ in ${\mathrm{F}}_{2}$-laser-irradiated silica $(\mathrm{Si}{\mathrm{O}}_{2})$ glass between 10 and $330\phantom{\rule{0.3em}{0ex}}\mathrm{K}$. Two key techniques were used: single-pulse ${\mathrm{F}}_{2}$ laser photolysis of silanol (SiOH) groups to selectively create pairs of ${\mathrm{H}}^{0}$ and oxygen dangling bonds (nonbridging oxygen hole centers, NBOHC), and in situ photoluminescence measurements of NBOHCs to monitor their reactions with ${\mathrm{H}}^{0}$ and ${\mathrm{H}}_{2}$ as a function of time and temperature. A smalle…

PhysicsDiffusionDangling bondQuantum yieldCondensed Matter PhysicsLaserElectronic Optical and Magnetic MaterialsAmorphous solidlaw.inventionNonbridging oxygenCrystallographyDistribution functionlawIrradiationPhysical Review B
researchProduct

Special needs and characteristic features of (photo)catalytic reactors with a review of the proposed Solutions

2019

Abstract In the present chapter, the analogies between photocatalytic systems and the systems where the more common thermally activated reactions take place are highlighted. The objective is to propose a unified approach for the analysis and the design, which, however, must take into account how and why photocatalytic reactors differ from reactors with thermal reactions. The necessity of absorbing photons to activate the photocatalytic process adds complexity to the system, but some approaches are presented to simplify the problems and make easier their solution.

Photo catalyticMaterials sciencebusiness.industryPhoton absorptionPhotocatalysiQuantum yield.Scientific methodThermalPhotocatalysisPhotocatalytic reactor engineeringProcess engineeringbusinessQuantum yieldRadiant energy transfer
researchProduct

Identifying lifetime as one of the key parameters responsible for the low brightness of lanthanide-based OLEDs.

2021

OLEDs based on lanthanide complexes have decisive optical advantages but are hampered by low brightness. Despite the efforts to optimize several parameters such as quantum yield and charge carrier mobility, there seems to be another key parameter that hinders their performances. Experimental data are therefore collected for mixed-ligand europium complexes with bathophenanthroline and different classes of anionic ligands and screened to identify the key parameter responsible for this situation, which turns out to be the long lifetime of their excited states. A broad literature search supports this conclusion, showing that lanthanide complexes are inferior to other classes of OLED emitters of…

Inorganic ChemistryLanthanideBrightnessMaterials sciencechemistryChemical physicsExcited stateKey (cryptography)OLEDchemistry.chemical_elementQuantum yieldEuropiumQuantumDalton transactions (Cambridge, England : 2003)
researchProduct

A Strongly Luminescent Chromium(III) Complex Acid

2018

The synthesis, structure, reactivity, and photophysical properties of a novel acidic, luminescent chromium(III) complex [Cr(H2 tpda)2 ]3+ (23+ ) bearing the tridentate H2 tpda (2,6-bis(2-pyridylamino)pyridine) ligand are presented. Excitation of 23+ at 442 nm results in strong, long-lived NIR luminescence at 782 nm in water and in acetonitrile. X-ray diffraction analysis and IR spectroscopy reveal hydrogen-bonding interactions of the counter ions to the NH groups of 23+ in the solid state. Deprotonation of the NH groups of 23+ by using a non-nucleophilic Schwesinger base in CH3 CN switches off the luminescence. Re-protonation by using HClO4 restores the emission. In water, the pKa value of …

010405 organic chemistryChemistryOrganic ChemistryQuantum yieldInfrared spectroscopychemistry.chemical_elementGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysis0104 chemical scienceschemistry.chemical_compoundChromiumDeprotonationPyridineHydroxideLuminescenceAcetonitrileChemistry - A European Journal
researchProduct